93 research outputs found

    High Trypanosoma spp. diversity is maintained by bats and triatomines in Espírito Santo state, Brazil

    Get PDF
    The aim of this study was to reevaluate the ecology of an area in the Atlantic Forest, southeast Brazil, where Chagas disease (CD) has been found to occur. In a previous study, immediately after the occurrence of a CD case, we did not observe any sylvatic small mammals or dogs with Trypanosoma cruzi cruzi infections, but Triatoma vitticeps presented high T. c. cruzi infection rates. In this study, we investigated bats together with non-volant mammals, dogs, and triatomines to explore other possible T. c. cruzi reservoirs/hosts in the area. Seventy-three non-volant mammals and 186 bats were captured at three sites within the Guarapari municipality, Espírito Santo state. Rio da Prata and Amarelos sites exhibited greater richness in terms of non-volant mammals and bats species, respectively. The marsupial Metachirus nudicaudatus, the rodent Trinomys paratus, and the bats Artibeus lituratus and Carollia perspicillata were the most frequently captured species. As determined by positive hemocultures, only two non-volant mammals were found to be infected by Trypanosoma species: Monodelphis americana, which was infected by T. cascavelli, T. dionisii and Trypanosoma sp., and Callithrix geoffroyi, which was infected by T. minasense. Bats presented T. c. cruzi TcI and TcIII/V, T. c. marinkellei, T. dionisii, T. rangeli B and D, and Trypanosoma sp. infections. Seven dogs were infected with T. cruzi based only on serological exams. The triatomines T. vitticeps and Panstrongylus geniculatus were found to be infected by trypanosomes via microscopy. According to molecular characterization, T. vitticeps specimens were infected with T. c. cruzi TcI, TcII, TcIII/V, and TcIV, T. c. marinkellei and T. dionisii. We observed high trypanosome diversity in a small and fragmented region of the Atlantic Forest. This diversity was primarily maintained by bats and T. vitticeps. Our findings show that the host specificity of the Trypanosoma genus should be thoroughly reviewed. In addition, our data show that CD cases can occur without an enzootic cycle near residential areas

    Ecological scenario and Trypanosoma cruzi DTU characterization of a fatal acute Chagas disease case transmitted orally (Espírito Santo state, Brazil)

    Get PDF
    Submitted by Sandra Infurna ([email protected]) on 2016-12-09T13:37:11Z No. of bitstreams: 1 samanta_xavier_etal_IOC_2016.pdf: 1232916 bytes, checksum: cb48d61d779f9c21eabb66900de216bd (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2016-12-09T13:49:04Z (GMT) No. of bitstreams: 1 samanta_xavier_etal_IOC_2016.pdf: 1232916 bytes, checksum: cb48d61d779f9c21eabb66900de216bd (MD5)Made available in DSpace on 2016-12-09T13:49:04Z (GMT). No. of bitstreams: 1 samanta_xavier_etal_IOC_2016.pdf: 1232916 bytes, checksum: cb48d61d779f9c21eabb66900de216bd (MD5) Previous issue date: 2016Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia de Tripanossomatídeos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia de Tripanossomatídeos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia de Tripanossomatídeos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia de Tripanossomatídeos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia de Tripanossomatídeos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia de Tripanossomatídeos. Rio de Janeiro, RJ, Brasil.Trypanosoma cruzi infection via oral route results in outbreaks or cases of acute Chagas disease (ACD) in different Brazilian regions and poses a novel epidemiological scenario. In the Espírito Santo state (southeastern Brazil), a fatal case of a patient with ACD led us to investigate the enzootic scenario to avoid the development of new cases. At the studied locality, Triatoma vitticeps exhibited high T. cruzi infection rates and frequently invaded residences

    Maintenance and breeding of Thrichomys (Trouessart, 1880) (Rodentia: Echimyidae) in captivity

    Full text link
    South American histricognath rodents Thrichomys apereoides laurentius and Thrichomys pachyurus are natural hosts of Trypanosoma cruzi, agent of Chagas disease. We established breeding colonies of these species to serve as experimental models in various parasitological studies. Both species of Thrichomys have all the requirements necessary to become excellent laboratory models: they can be easily maintained in the standard laboratory conditions and breed throughout the year and they do not have any special dietary demands and can be fed by standard food pellets designed for laboratory mice. Both species produce precocious offspring that have their eyes and ears open, teeth erupted, fur well developed, and can eat solid food in the first week of life. T. a. laurentius has larger litter sizes and lower body masses at birth and weaning than T. pachyurus. Moreover, females of T. a. laurentius reach puberty earlier and with lower body mass than T. pachyurus

    Lower Richness of Small Wild Mammal Species and Chagas Disease Risk

    Get PDF
    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11–89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Diretriz da Sociedade Brasileira de Cardiologia sobre Diagnóstico e Tratamento de Pacientes com Cardiomiopatia da Doença de Chagas

    Get PDF
    This guideline aimed to update the concepts and formulate the standards of conduct and scientific evidence that support them, regarding the diagnosis and treatment of the Cardiomyopathy of Chagas disease, with special emphasis on the rationality base that supported it.  Chagas disease in the 21st century maintains an epidemiological pattern of endemicity in 21 Latin American countries. Researchers and managers from endemic and non-endemic countries point to the need to adopt comprehensive public health policies to effectively control the interhuman transmission of T. cruzi infection, and to obtain an optimized level of care for already infected individuals, focusing on diagnostic and therapeutic opportunistic opportunities.   Pathogenic and pathophysiological mechanisms of the Cardiomyopathy of Chagas disease were revisited after in-depth updating and the notion that necrosis and fibrosis are stimulated by tissue parasitic persistence and adverse immune reaction, as fundamental mechanisms, assisted by autonomic and microvascular disorders, was well established. Some of them have recently formed potential targets of therapies.  The natural history of the acute and chronic phases was reviewed, with enhancement for oral transmission, indeterminate form and chronic syndromes. Recent meta-analyses of observational studies have estimated the risk of evolution from acute and indeterminate forms and mortality after chronic cardiomyopathy. Therapeutic approaches applicable to individuals with Indeterminate form of Chagas disease were specifically addressed. All methods to detect structural and/or functional alterations with various cardiac imaging techniques were also reviewed, with recommendations for use in various clinical scenarios. Mortality risk stratification based on the Rassi score, with recent studies of its application, was complemented by methods that detect myocardial fibrosis.  The current methodology for etiological diagnosis and the consequent implications of trypanonomic treatment deserved a comprehensive and in-depth approach. Also the treatment of patients at risk or with heart failure, arrhythmias and thromboembolic events, based on pharmacological and complementary resources, received special attention. Additional chapters supported the conducts applicable to several special contexts, including t. cruzi/HIV co-infection, risk during surgeries, in pregnant women, in the reactivation of infection after heart transplantation, and others.     Finally, two chapters of great social significance, addressing the structuring of specialized services to care for individuals with the Cardiomyopathy of Chagas disease, and reviewing the concepts of severe heart disease and its medical-labor implications completed this guideline.Esta diretriz teve como objetivo principal atualizar os conceitos e formular as normas de conduta e evidências científicas que as suportam, quanto ao diagnóstico e tratamento da CDC, com especial ênfase na base de racionalidade que a embasou. A DC no século XXI mantém padrão epidemiológico de endemicidade em 21 países da América Latina. Investigadores e gestores de países endêmicos e não endêmicos indigitam a necessidade de se adotarem políticas abrangentes, de saúde pública, para controle eficaz da transmissão inter-humanos da infecção pelo T. cruzi, e obter-se nível otimizado de atendimento aos indivíduos já infectados, com foco em oportunização diagnóstica e terapêutica. Mecanismos patogênicos e fisiopatológicos da CDC foram revisitados após atualização aprofundada e ficou bem consolidada a noção de que necrose e fibrose sejam estimuladas pela persistência parasitária tissular e reação imune adversa, como mecanismos fundamentais, coadjuvados por distúrbios autonômicos e microvasculares. Alguns deles recentemente constituíram alvos potenciais de terapêuticas. A história natural das fases aguda e crônica foi revista, com realce para a transmissão oral, a forma indeterminada e as síndromes crônicas. Metanálises recentes de estudos observacionais estimaram o risco de evolução a partir das formas aguda e indeterminada e de mortalidade após instalação da cardiomiopatia crônica. Condutas terapêuticas aplicáveis aos indivíduos com a FIDC foram abordadas especificamente. Todos os métodos para detectar alterações estruturais e/ou funcionais com variadas técnicas de imageamento cardíaco também foram revisados, com recomendações de uso nos vários cenários clínicos. Estratificação de risco de mortalidade fundamentada no escore de Rassi, com estudos recentes de sua aplicação, foi complementada por métodos que detectam fibrose miocárdica. A metodologia atual para diagnóstico etiológico e as consequentes implicações do tratamento tripanossomicida mereceram enfoque abrangente e aprofundado. Também o tratamento de pacientes em risco ou com insuficiência cardíaca, arritmias e eventos tromboembólicos, baseado em recursos farmacológicos e complementares, recebeu especial atenção. Capítulos suplementares subsidiaram as condutas aplicáveis a diversos contextos especiais, entre eles o da co-infecção por T. cruzi/HIV, risco durante cirurgias, em grávidas, na reativação da infecção após transplante cardíacos, e outros.    Por fim, dois capítulos de grande significado social, abordando a estruturação de serviços especializados para atendimento aos indivíduos com a CDC, e revisando os conceitos de cardiopatia grave e suas implicações médico-trabalhistas completaram esta diretriz.&nbsp

    Ecological scenario and Trypanosoma cruzi DTU characterization of a fatal acute Chagas disease case transmitted orally (Espírito Santo state, Brazil)

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore